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Abstract. The problem of colour symmetries of crystals and quasicrystals is investigated from
its combinatorial point of view. For various lattices and modules in two and three dimensions,
the number of colourings compatible with point and translation symmetry is given in terms of
Dirichlet series generating functions.

1. Introduction

The concept of colour symmetry is a useful tool to investigate the structure of discrete point
sets (or related patterns) with additional (scalar) degrees of freedom on top of each point,
called colours. To make this a bit more precise, let us consider a discrete poift, set,
Euclidean spac&”. Let us assume that each point shows one of finitely many colours.
Finally, define the local isomorphism class, B) as the class of coloured point sets that
are patch-equivalent witf®, i.e. the class of point sef8’ with the property that arbitrarily

large patches of’ occur inP and vice versa.

Now, a Euclidean motion combined with a (global) permutation of colours is called
a (generalized) colour symmetry of [&] iff it maps LI(P) into itself. The classification
of these symmetries is a rather difficult task, and has been studied extensively in two and
three dimensions, see [6, 16, 17] and references therein. While being incomplete even in this
crystallographic case, things are much worse with non-crystallographic symmetries which
are of considerable interest in the theory of quasicrystals.

There are attempts to find colour symmetries with a small number of colours explicitly
[9], and an approach via the Fourier transform can be used algorithmically to calculate all
possibilities up to a given number of colours [8], but neither of these can give full answers.
There is another approach to colourings, based on the algebraic structure of crystals and
guasicrystals [12], which can be used to count the different possibilities to colour such
structures in a way that is compatible with its natural symmetry.

To expand on that, we will now consider the slightly more special case of colour point
symmetries where one colour occupies an object of the same kind as the original, uncoloured
one (e.g. it occupies a square sublattice of the square lattice etc) and all the other colours are
translates (i.e. they code the cosets or residue classes). Admittedly, this is only a subclass of
the colouring problem (compare with the discussion in [6]), but we will restrict our attention
even further to irreducible symmetries, suchmald symmetry in the planen(> 3) or
cubic and icosahedral symmetry in three-space. Nevertheless, this problem should be of
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some interest because it can be solved completely in two dimensions (2D) and to a large
extent in three dimensions (3D).

In the latter case, one has to extend the set-up to the situation that one colour occupies
a sublattice (or submodule) with the same point symmetry (which actually only means that
the point symmetry groups under consideration are conjugates of one another in O(3)). This
is necessary because the black-and-white colourirgdf.e. the 3D checkerboard lattice)
results in a face-centred Bravais type, but, obviously, should not be excluded.

In this article, we start with the analysis of possibilities to achieve such a colouring
(which is a combinatorial problem) and postpone the determination of the corresponding
colour groups (which is a group theoretic problem), together with some more general results,
to a forthcoming publication, see [2] and references therein. The first part deals with the
plane, where we explain the setting with the familiar case of the square lattice and later
present other cases of interest. As we focus on applicability to quasicrystals, we will actually
have to talk about the colouring of modules rather than of lattices in general.

The second part derives similar results for cubic lattices as well as icosahedral modules,
with additional material being presented in the appendix. In both cases, we also discuss in
some detail the relation between the three different Bravais classes that can sit inside each
other and give rise to colourings compatible with cubic resp. icosahedral symmetry.

2. A warm-up exercise: the square latticeZ?

Let us illustrate the problem and its solutions with a simple 2D example. The only lattice
in the Euclidean plane that shows fourfold symmetry (described by the cyclic grguis
the square lattice resp. its Bravais class, i.e. up to scaling and Euclidean motions, only

Z? = {(m,n)|m,n € 7} 1)

hasC4-symmetry. Due to invariance under reflection in #haxis, the full symmetry group
is actually D4, the dihedral group of the order of 8.

We now want to colour the lattice sites with finitely many pairwise different colours
in such a way that the coloured version is still crystallographic (i.e. its periods span the
plane over the reals), one of the colours occupies a sublattice which is still invariant under
fourfold rotation (and hence of square lattice type), while the other colours label the cosets.
To classify all possibilities, we thus have to know how many square sublattic&s off a
given index,m, exist (the cosets are unique). Let us call this numhén).

Clearly, Z? contains many more sublattices than those we are presently interested in:
if, for example, there are three sublattices of index 2, only one of which is square while the
other two have rectangular symmetry only. Consequently, our numbgrs), are smaller
than the numberf@ (m), of all sublattices of index:, given by [1]

fPmy=>Y d @)
dlm
whered|m meansd dividesm. The corresponding Dirichlet series generating function is
c(s)¢(s — 1) where¢(s) is Riemann’s¢-function, see [5] or the appendix. This type of
generating function is more appropriate than the usual power series betglUse is a
multiplicative function, i.e.f® (1) = 1 and f® (mn) = @ (m) f@ (n) whenevenn, n are
coprime. This type of structure will also show up in all the other cases discussed in this
article.
How can we select, from the sublattices of indexthose that are square lattices? An

efficient way, which also generalizes to other planar symmetries, is through the observation
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thatZ? can be seen as a ring of algebraic integers. In this case, we have
72 =7[i] = {m +nilm,n € 7} ©))

which are the so-called Gaussian integers [5], the algebraic integers in the quadratic field
QG) = {p +4qilp,q € Q} (a field extension of the rational® of degree 2). Sublattices
now correspond to subgroups of finite index, and those invariant under fourfold rotation
(i.e. under multiplication by) correspond tadeals They are the subgroupsc Z[i] with
ya C afor all y € Z[i], for background material on the concepts and results used we refer
the reader to [7, 5, 18].

Consequently, counting all square sublatticeZobf indexm is the same as counting all
ideals of the rindZ[i] of finite indexm, wherem = norm(a) is the (number theoretic) norm
of a (which equals the number of residue classes of Z[i]). As Z[i] is a principal ideal
ring and commutative, each ideal, is two-sided and generated by an element Z[i],
ie.

a = aZ[i] (4)
for somea = k + ¢i. But then, the norm of simply reads
norm(a) = |a|? = k? 4 ¢2 )

which is the area of the fundamental domain of the sublattice defined by

The number of these ideals of indexis our numbelu,(m), and it is a multiplicative
function which is a consequence of unique prime factorization (up to units) [5] in the ring
Z[i]. Its generating function (of Dirichlet series type) is the Dedekfnflinction of the
field K = Q)

Ci(s) = Z m _ Z a4(m) ©)

where the first sum runs over all ideals# {0}. It reads explicitly

Sagm) 1 1 !
w0=2 0 me [l asr s

m=1 =1(4) 4

1+1+1+2+1+1+2+2+1 2
o 2 4 5 & o 10 13 16

e SR (@)

One can easily derive an explicit expression for the coefficients. The resujtlis = 1,
as(2") = 1, ag(mn) = ag(m)as(n) for m, n coprime (multiplicativity ofas(m)), as(p”) =
r+1 for p = 1(4), and, finally,as(p?) = 1 andas(p? 1) = 0 for p = 3(4).

A Dirichlet series generating function allows the determination of the asymptotic
behaviour of the coefficients through the residue of ghteinction at its right-most pole
in the complexs-plane § = 1 in this case). The result is that tlewveragevalue of
as(m) is constant, namelyr/4. In other words, the number of possibilities to colour the
square lattice with less thaN colours (and with our general restrictions discussed above)
is asymptoticallyr N /4.

3. More generality: other planar cases

Having described the square lattice in detail, we shall now generalize our approach to other
Z-modules of the plane, namely those witkfold rotational symmetryn > 2. Though
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many things are similar here, the number theoretic background is a lot more involved, see
[18].

Let us nevertheless consider tespan of a regulan-star,

M, =71+ 7E + -+ ZE" 1 (8)
where& = exp(2ri/n). This is called the standardfold symmetric module of the plane
[11]. It is a Z-module of rank¢ (n), where¢ denotes Euler’s totient function [5], and
it is discrete (i.e. a lattice) only for = 3,4, 6. Note thatM3z = Mg, and, in general,
M, = My whereN is defined as: resp. 2 for n even resp. odd. So, the moduM,,
has N-fold rotational symmetry.

The cases withh = 5 andn > 7 correspond to 2D quasicrystals or other non-periodic
Delone sets, where they show up as the so-called limit translation modules [4, 10] of the
discrete structures. Consequently, as discussed in detail in [13,14], these modules are
universal objects, and the colouring problem has to be solved for them. The results then
apply to each translation class of points of the corresponding Delone set separately.

Now, how does definition (8) help? The first observation is tht = Z[£] is the ring
of cyclotomic integers in the cyclotomic fiel@(¢) (see [18] for details), and the second
is that the subgroups we need (i.e. those w\tHold symmetry) are agaiideals of Z[£].

So, it is helpful to know the Dedeking-function of Q(¢) which is the Dirichlet series
generating function of the numbers of ideals of a given index.

In what follows, we will list some examples, including all those related to 2D
quasicrystals found so far. They share another special property with other cases of small
n, namely the uniqueness of the ideal class. This means that, for dixed ideals are
equal up to a similarity transformation, or, in other words, there is only one Bravais-type
of n-fold symmetric modules of the plane [11] of ragin). This is true of precisely 29
planar modules, namely those with

n=23,4,57,89 11 12 13 15, 16,17, 19, 20, 21, 24, 25, 27, 28,
32, 33, 35, 36, 40, 44, 45, 48, 60, 84

(wheren # 2 mod 4 to avoid double counting), see [18, theorem 11.1].

The necessary material for the actual calculation of¢tfienctions can be found in [14,
section Ill] and will not be repeated here. In what follows, we just summarize the results
for several important 2D lattices and modules.

3.1. The triangular lattice

The triangular lattice (with sixfold symmetry) is a scaled-down version of the root lattice
A, and coincides with the ring of Eisenstein integers [5]. They are the algebraic integers
in the quadratic fieldk = Q(+/—3). The corresponding-function reads

o0
ag(m) 1
{k(s) = ; -
m2=:1 m1-37 pl:!a A= pm)2 plz!?,)
S T 1+ 2
34 71213 16 19
vyt 2y )
215 25 27 28
The explicit expressions for the coefficients arg(l) = 1, as(3") = 1, ag(mn) =
ag(m)ag(n) for m,n coprime,ag(p”) = r + 1 for p = 1(3), and finally, forp = 2(3),
one hasag(p?) = 1 andag(p? 1) = 0. The average value afs(m) is asymptotically

7/3v/3.
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3.2. Fivefold symmetry

The fivefold module in the plané\ts, is the ring of algebraic integers in the fiekd= Q(§),
with & = €¥'/5, Its ¢-function reads

oo

axo(m) 1 1 1 L
aw=3 " =1ss W apme Il apap Il 1=

m=1 =1(5) =-1(5) =+2(5)
—1+1+4+1+1+4+4+4+4
- 5 11" 16 25 318 415 55 6l

4 1 1 4

71 + 80 + 81 + 10¥
As before, the coefficients;o(m) can be given explicitly. Due to their multiplicativity, it
is sufficient to knowaio(m) for m a prime power. The result igo(1) = 1; a10(5") = 1,
a1o(p") = (r + D(r + 2)(r +3)/6 for p = 1(5); aro(p* ™) = 0 andaio(p®) =r + 1 for
p = 45); finally, a10(p*) = 1 andaip(p* ) = 0 (with £ = 1, 2, 3) for p = +2(5). The
average value ofi;o(m) is asymptotically 42log(r)/25v/5 ~ 0.339 837, wherer denotes
the golden ratio.

+

T (10)

3.3. Sevenfold symmetry

Before we complete the examples related to quadratic irrationalities, let us give at least
one example of a more complicated structure, namely that of sevenfold (and hence also
fourteenfold) symmetry. Heredf = Q(e?*'/7), and thez-function reads:

o0
aya(m) 1 1 1
Lk (s) = = — — Fa——
m2=:1 m? 1-7 épL!?) d-p 5)6p531:r[5(7)1_p »

1 1
X l_[ —35)2 l_[ —25)3
p=2 or &7 A=p=) p=6(7) 1—=p=)
iy 2y 0,0, 1,2 ,2, 6
N T8 29 43 49 5660 64 7L
6 6 3 6
11
+113>‘ + 127 + 169 + 197 + (11)
Since it is clear how to derive explicit formulae for the coefficients by suitable
manipulations with geometric series, we suppress such details hereafter. Also, the

asymptotic behaviour can be calculated along the lines mentioned above, see [14] for detalils.

3.4. Eightfold symmetry
Here, we obtain, withk = Q(e?"//8):

x~agm) 1 1 1 !
Lk (s) = n; m 1_ o pl_[ 1— p_s)4p 1_[ (1-— p—Zv)Zp 1_[ a- p—2v)2

=1(8) =-1(8) =+3(8)

—1+l+1+1+2+1+4+2+2

Tt T Teg Te 16 17 18 ' 25
+1+4+2+4+2+ (12)
32 34 ' 36 41 ' 49 :
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3.5. Twelvefold symmetry

The cyclotomic field is nowk = Q(e?"/*2), and the¢-function reads

o alz(m) 1 1 1
G0 =2 " =t aaoes 1L as

p=1(12)
1 1

< 1 g 1l g2
— 2 22

peiiz A= P72 Ly A=)

gty 4 12 1,42
stoT13 e T e Tar T ag

1 4 1

1 1 13

61 64 173 Ten T (13)

4
tex t

At this point, we close the section on 2D examples. More can be worked out explicitly
with the material of [14, section Ill]] and the general theory as explained in [18, sections 1-4
and 11]. In table 1, the numbeuss; (m) up tom = 30 are summarized for various.

Table 1. Number of colourings for various planar symmetries.

3

ag(m) ag(m) ag(m) aio(m) aia(m)  aya(m)

oO~NO O~ WNPRE

=
]
ONOONWOOOONORNRFRPOONOONRPPFPOONEFRLOPRLPR
OONRFPORFRPOOONONOORFRPROONRFPFOORPRONOORERFROLPR
OO O0OO0OONOOODOOONIMNRPRPOOOOOONRPFPOOORrORLPRF
OO O0OO0OO0ORFROO0ODO0ODO0ODO0ODO0OO0OO0ORFRPROO0OO0OOMNODOOOORrPOOOR
OO O0OO0OONODODO0OO0OO0OO0OO0OO0OFrRPROOMNODOOPRPROOOORLOOLR
[N NeNeoNeoNeoNoNoNeoNeNoNoloNoNoNoNoNoNoNoNoel VUl e lelolNe oS
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4. 3D: The cubic Bravais classes

Let us consider the so-called primitive cubic lattice, represente@3yThis is also called

P-type for short. It is only one of three possible Bravais classes with cubic symrmgtry

the other two being the face-centred cubic (fccFotype) and the body-centred cubic (bcc

or B-type) ones. This shows one immediate complication: sublattices with cubic symmetry

may be of a different Bravais type! In fact, insi@ there is oneF-type sublattice of

index 2 Cr = {(my, mo, m3)|m1 + my + mz ever}) and oneB-type sublattice of index 4

(Tp = {(m1, ma, m3)|m1 = my = m3(2)}). Consequently, it is natural to attack our problem

in two steps, first focusing on a single Bravais class and later extending to all of them.
Again, the focus is on those cases where one colour occupies a sublattice (compare with

[6] for the more general situation). Let us thus first study sublattice®-bfpe, i.e. we ask

for rotationsR, followed by a homothetw > 0, such that

aRZ3 C 78 (14)

Note that we need neither consider reflections, as they can always be writterR as
and inversion is a lattice symmetry, nor negativefor the same reason. Alse, = 0
would not give us a 3D lattice. If we now use the standard basgi®,, e and write
72 = Ze1 ® Ze, ® Zes, we are actually asking for ak € SO(3) anda > 0 such thaR
has integer entries only.

Now, if R is integral, so is its transpose, an® («R)’ = «?1 implies«® € N. On
the other hand, d&tR) = «° is also an integer. Therefore, = «®/a? must be rational.
But, as its square is an integer,itself must be an integer, and then the rotation matrix,
R, can only have rational entries, i.8.€ SO(3,Q). Then,a« must actually be an integer
multiple of the denominator oR (being the smallest integet such thatn R is integral),
see [2] for a more detailed discussion.

Let us pause to remark that the same type of argument can be usgtvith arbitrary
n. If n isodd one finds thair R maps onto a-type sublattice if and only iR € SO (n, Q)
andw is an integer multiple of the denominator 8f If, however,n is even we can also
obtain solutions where is a quadratic irrationality (and onlg? € SO (n, Q)), as happened
above in the case of the square lattice.

Our combinatorial problem in 3D can now be solved if we know the number of
SO (3, Q)-matrices with a given denominator. This number is known from the solution
of a different, but closely related problem, namely that of the coincidence rotations of the
cubic lattice, compare with [3] and references therein. The corresponding Dirichlet series
generating functionbgyy(s) is repeated in the appendix for convenience.

Let us now derive the generating function for the number of cubic sublattic&s.of
There are three different sources for them. First, for eRch SO (3, Q), we have one
solution of the formI’ = den(R)RZ® (with den(R)* different colours, namely one fdr
and each of its cosets). This same solution is obtained by 24 pairwise diffe@g3; Q)-
matrices, becausgO (3, Z) (the rotation symmetry group &?°) contains 24 elements. The
generating function for these cases is obviouBn(3s).

Next, for each such’, we also have the sublatticel" for eachm € N, and none of
those, excepr itself, has been counted yet. Since the number of coloursnforis m>
times as large as that @f, our generating function gets multiplied lgy3s) to account for
these possibilities. This exhausts tRetype sublattices of.® where

F(s) = (@) PenB) =14 ~ + > 4 = 4 4 > 4 9
§) = $(35)DPeyp(3s) = & 27 64 125 216 343
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1 17 7 13
*512 T 720 T 1000 T 1332 T

is the proper generating function for them.
Finally, one can also find, as explained earlier, Bitype and aB-type sublattice in
each of theP-type cubic ones, which results in an overall facter 2% + 47*. Altogether

this gives the generating function

Feun(s) = (L +27° +47°)2(3s5) Deun(3s)
I I O A S
T2 s g 16 27 32 B4
1 5 7 1
- 16
tea T108 125 T128 T (16)

The Bravais type can be determined as followsmIfs a possible number of colours (i.e.
the denominator of a fraction with non-zero numerator), andi#f the largest integer such
that 2|m, then the colouring is based df, F- or B-type if s is congruent (mod 3) to O,

1 or 2, respectively. The answer to the other cubic lattices is the same, with the rdtes of
F and B cyclically interchanged.

(15)

5. 3D: The icosahedral modules of rank 6

It is well known that there are three different icosahedral modules in three-space, which
can be obtained as projections of the three types of hypercubic lattices in six-space. They
are thus called-, P-and F-type for body-centred, primitive and face-centred, respectively.

It is convenient to describe them in an orthogonal basis,, ez of twofold axes of the
icosahedron. Withy; € Z[t], T = (14 +/5)/2 the golden ratio, th&- and F-type modules

then read

3
MB = {Zaiei

i=1
Mp ={x € Mplai+ as + az = 0(2)}.

Clearly, M is a submodule oMz of index 4, and both arg&-modules of rank 6, but also
Z[t]-modules of rank 3. In particular, they are both invariant under multiplication.by

In between these two modules, there is alsB-type module, or in fact there are three
different ones of this type (all three on different scales), hamely

M = {x € Mplas + oz +az =0 or 1(2)}
MP = (x € Mplas + a2+ a3z =0 or t(2) (17)
MY = {x € Mplas+ o2+ as =0 or r(2)}.

They are agairZ.-modules of rank 6, but ndf[t]-modules because they are not invariant
under multiplication byr. In fact, asr/\/lfpl) = /\/lf) etc, they form a three-cycle under
multiplication by r. Nevertheless, together with[t]® = Z[r]e1 + Z[t]es + Z[t]es, we
have the inclusion

201 + Tap + o3 = 0(2)}

3 4 2 0) 2 4 3
27[7]° € My C My C Mp C Z[7] (18)

fori =1, 2, 3, where the integer on top of the inclusion symbol denotes the corresponding
index, for exampleM s is a submodule of[7]® of index 4 which means th&[z]® is a
disjoint union of Mg and three cosets of it.
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Let us now consider the colouring problem for the modM and let us assume that
we know all submodules of the same Bravais type which are maximal in the sense that
aA C Mp impliesa € Z[t]. But then, asA itself must be &[r]-module, eactw € Z[t]
is possible, and the corresponding group—subgroup index is

[A:aA] = [N(@)?| (19)

whereN (y) denotes the (number theoretic) norm in the quadratic fi&ld). Fory = p+qgrt
it reads

N(y) :=yy = p*+pqg —¢* (20)

wherey’ = p + ¢’ is the algebraic conjugate of defined through’/ = -1/t =1 - .

In particular, equation (19) infers thatA requires|N («)3| times as many colours as.
The number ofdifferent solutions obtained this way is in one-to-one correspondence with
the ideals ofZ[r], which are counted by the-function ¢g;)(s), see the appendix. So, this
contributes a factor ofy;)(3s) to the generating function of the colouring problem.

Now, we have to determine the maximal submodulef B-type. Before we do
that, let us briefly look at the related colouring problem for the (modulated cubic) module
Z[1]® = Z® @ ©Z3. Consider a rotationR, and a stretching factog, such that

aRZ[7]® c Z[<]3. (21)

Then, by an analogous argument to that of the cubic case, we may conclude that both
«® are inZ[r], and hencex € Q(r). But, from (20),N(«) € Q and N(a?) = N(a)? € Z,
henceN (a) € Z which impliesa € Z[t]. ConsequentlyR € SO (3, Q(r)), and we then
conclude, very much as in the case of the cubic latfiégthat the only (linear) similarity
transformations that map[z]® into itself areZ[r]-multiples of deriR)R, where deqR) is
the greatest common divisor of &l € Z[t] with SR integral. Note thatSO (3, Q(z)) is
the group of coincidence rotations @fz]® (and simultaneously of the icosahedral module
Mp), see [3, 1] for details. From here, one can calculate the generating function of the
different colourings [2], using explicit results from [1].

Instead of going into details there, let us now consider the icosahedral mbdgjend
a similarity transformatiort R such that

aRMp C M3. (22)

From (18) it follows that alsawxRMp C Z[r]® and hencexR(2Z[z]®) C Z[r]3, which
means that R must haveZ[t] entries only. This is a necessary (but not sufficient)
condition, whilea R integral is certainly sufficient, but not necessary. In any case, we can
conclude that 2 € Z[t] and R € SO (3, Q(1)) is a rational matrix.

For eachR € SO(3,Q(r)) we thus obtain one maximaM z-submoduleA, and
precisely 60 differentkR’s will result in the sameA as there are 60 rotation symmetries
of the icosahedron that map onto itself. To obtainA, we have to multiplyR by a suitable
number, and, in contrast to the cubic case above, this number is not always the denominator
of R, but sometimes a divisor of it (then coinciding with d&n/2 up to units inZ[z]). In
any case, it can be chosen as a totally positive numbgf#hwhose norm is the so-called
coincidence index2 (R), defined through [3, 1]

2(R) :=[Mp : (Mp N RM3p)]. (23)

The corresponding similarity transformation map$z to a maximal submodul@ which
then requiresz (R)? different colours. So, withbic,(s) being the generating function for
the icosahedral coincidence problem, see [3,1] and the appendix, the contribution to the
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colouring problem is given by the factor dfi.,(3s), in complete analogy with the cubic
case.
The same kind of reasoning also applies to the module. Therefore,

F(s) = Cogm (35)Pee@s) =14 0 4 4 L 26 26
$) = Lo (39) Pieo(38) = L+ 0 + 355 + 729 T 133% T 2006

+42+42+ 37 . 62 n
6859 8000 15625 24389

(24)

is, at the same time, the generating function for Bwype submodules oMz and for
the F-type submodules ofM . In order to include theP-type modules in a natural
way, we observe that the triplevty, M?P, M) considered as a set is mapped onto
itself under multiplication withany Z[z]-number, while each member of the set has its
own coincidence site submodules (with the same index formula as foB{tend F-type
modules). Furthermore, two such triples (which are three-cycles under multiplication by
7) are either equal or disjoint. So, it is easier to count triples rather than single modules
becauseF (s) is then also the generating function for this case, and a separate counting just
requires multiplication of the corresponding numerator by 3.

If we want to know the number of icosahedral submodules of either type, we obtain
three different solutions, depending on the module we start from:

FP(s) = (1427 + 47°) o) (35) Pico(39)
FP(s) = (1427 4+ 327°) g (35) Pico(39) (25)

ico
Fio' () = (14 167" 4 327") g (35) Pico(3s).
This is slightly more complicated than the cubic case as a consequence of equation (18).
In particular, bothB- and P-type allow a two-colouring (then being df- and F-type,
respectively) while 16 is the smallest number of colours for ihtype module.

6. Concluding remarks

In this article, a subclass of the colouring problem of lattices and modules with irreducible
symmetries was considered. The combinatorial part was explicitly solved by means of
Dirichlet series generating functions for various planar modules witbld symmetry as

well as for cubic lattices and icosahedral modules in three-space. A similar analysis is
possible in four dimensions (4D), as well as for certain series of lattices in higher dimension.

Clearly, one is not only interested in the number of colouring possibilities but in the
actual colour symmetry groups. In the planar case, a more complete answer is possible
through the unique factorization property in rings of cyclotomic integers, which will be
reported separately. In three-space, due to non-commutativity of the ring of integer
guaternions resp. the ring of icosian numbers, things are more complicated and might
require a more detailed analysis.

As to the generality of our findings, it is clear that there are relevant cases of colourings
already with fourfold symmetry that doot belong to the restricted class investigated here,
compare with [17]. They can be found systematically by the method of [8] which also
allows for an algorithmic version that can be used on a computer. Whether the generating
function approach allows a generalization to cover this, e.g. along the lines of [6,17, 15], is
presently under investigation.
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Appendix

It is the purpose of this appendix to provide some details on the generating functions and
the ¢-functions used above. The simplest case is Riemaguitsiction itself,

=3 =Tl 28)

which allows a representation as an Euler product because all numerators of the sum are 1
and thus define a multiplicative function.

Similarly, the¢-function of Q(z) (which counts the ideals i#[7]) is the Dirichlet series
of a multiplicative function and reads

1 1 1
@ =1-gs 11 a1l 1=

p=%1(5) Bl o 4
1 1 1 2 1 2 1 1 2

:1 — — —
+ “+5Y+9Y+11"+16Y+19‘+20"+25y+29‘

12 2
+oon (27)

+

3 36 4L | 4k

The various othet -functions that appear in the text are described in detail in [14] and
need not be repeated here.

Finally, let us give the generating functions of the coincidence problem, for details on
how to calculate them we refer the reader to [1].

1+p~* 1-2"5¢(s)¢(s — 1)
Deup(s) = 1_[ 1— pls - 1+2- ¢(2s)

_,,4,6,8 12 12 14 24 18 20
F e 1y 13 15 17r 19
32 24 30 36 (28)
21 23 ' 25 27
145 14 p2 14 p=\?
Dico(s) = 1_5ls p512:2[(5) 1— p2(1—s) pzlﬂ:!(S) (l _ pl—s)

p#2

5 6 10+24+20+40+30+30+60
4 5 o 11 16 19 200 ' 25 @ 29

64 50 84 120

3v 36 T ar T as (29)
The latter function can be expressed in terms ofgHanction of equation (27)
(s o —1
Bioa(s) = Lo (9)5q) ( ) (30)

L) (2s)
which shows again the close analogy between the cubic and the icosahedral case.
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