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Abstract. The problem of colour symmetries of crystals and quasicrystals is investigated from
its combinatorial point of view. For various lattices and modules in two and three dimensions,
the number of colourings compatible with point and translation symmetry is given in terms of
Dirichlet series generating functions.

1. Introduction

The concept of colour symmetry is a useful tool to investigate the structure of discrete point
sets (or related patterns) with additional (scalar) degrees of freedom on top of each point,
called colours. To make this a bit more precise, let us consider a discrete point set,P, in
Euclidean spaceEn. Let us assume that each point shows one of finitely many colours.
Finally, define the local isomorphism class, LI(P), as the class of coloured point sets that
are patch-equivalent withP, i.e. the class of point setsP ′ with the property that arbitrarily
large patches ofP ′ occur inP and vice versa.

Now, a Euclidean motion combined with a (global) permutation of colours is called
a (generalized) colour symmetry of LI(P) iff it maps LI(P) into itself. The classification
of these symmetries is a rather difficult task, and has been studied extensively in two and
three dimensions, see [6, 16, 17] and references therein. While being incomplete even in this
crystallographic case, things are much worse with non-crystallographic symmetries which
are of considerable interest in the theory of quasicrystals.

There are attempts to find colour symmetries with a small number of colours explicitly
[9], and an approach via the Fourier transform can be used algorithmically to calculate all
possibilities up to a given number of colours [8], but neither of these can give full answers.
There is another approach to colourings, based on the algebraic structure of crystals and
quasicrystals [12], which can be used to count the different possibilities to colour such
structures in a way that is compatible with its natural symmetry.

To expand on that, we will now consider the slightly more special case of colour point
symmetries where one colour occupies an object of the same kind as the original, uncoloured
one (e.g. it occupies a square sublattice of the square lattice etc) and all the other colours are
translates (i.e. they code the cosets or residue classes). Admittedly, this is only a subclass of
the colouring problem (compare with the discussion in [6]), but we will restrict our attention
even further to irreducible symmetries, such asn-fold symmetry in the plane (n > 3) or
cubic and icosahedral symmetry in three-space. Nevertheless, this problem should be of
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some interest because it can be solved completely in two dimensions (2D) and to a large
extent in three dimensions (3D).

In the latter case, one has to extend the set-up to the situation that one colour occupies
a sublattice (or submodule) with the same point symmetry (which actually only means that
the point symmetry groups under consideration are conjugates of one another in O(3)). This
is necessary because the black-and-white colouring ofZ3 (i.e. the 3D checkerboard lattice)
results in a face-centred Bravais type, but, obviously, should not be excluded.

In this article, we start with the analysis of possibilities to achieve such a colouring
(which is a combinatorial problem) and postpone the determination of the corresponding
colour groups (which is a group theoretic problem), together with some more general results,
to a forthcoming publication, see [2] and references therein. The first part deals with the
plane, where we explain the setting with the familiar case of the square lattice and later
present other cases of interest. As we focus on applicability to quasicrystals, we will actually
have to talk about the colouring of modules rather than of lattices in general.

The second part derives similar results for cubic lattices as well as icosahedral modules,
with additional material being presented in the appendix. In both cases, we also discuss in
some detail the relation between the three different Bravais classes that can sit inside each
other and give rise to colourings compatible with cubic resp. icosahedral symmetry.

2. A warm-up exercise: the square latticeZ2

Let us illustrate the problem and its solutions with a simple 2D example. The only lattice
in the Euclidean plane that shows fourfold symmetry (described by the cyclic groupC4) is
the square lattice resp. its Bravais class, i.e. up to scaling and Euclidean motions, only

Z2 = {(m, n)|m, n ∈ Z} (1)

hasC4-symmetry. Due to invariance under reflection in thex-axis, the full symmetry group
is actuallyD4, the dihedral group of the order of 8.

We now want to colour the lattice sites with finitely many pairwise different colours
in such a way that the coloured version is still crystallographic (i.e. its periods span the
plane over the reals), one of the colours occupies a sublattice which is still invariant under
fourfold rotation (and hence of square lattice type), while the other colours label the cosets.
To classify all possibilities, we thus have to know how many square sublattices ofZ2 of a
given index,m, exist (the cosets are unique). Let us call this numbera4(m).

Clearly, Z2 contains many more sublattices than those we are presently interested in:
if, for example, there are three sublattices of index 2, only one of which is square while the
other two have rectangular symmetry only. Consequently, our numbers,a4(m), are smaller
than the number,f (2)(m), of all sublattices of indexm, given by [1]

f (2)(m) =
∑
d|m

d (2)

whered|m meansd dividesm. The corresponding Dirichlet series generating function is
ζ(s)ζ(s − 1) where ζ(s) is Riemann’sζ -function, see [5] or the appendix. This type of
generating function is more appropriate than the usual power series becausef (2)(m) is a
multiplicative function, i.e.f (2)(1) = 1 andf (2)(mn) = f (2)(m)f (2)(n) wheneverm, n are
coprime. This type of structure will also show up in all the other cases discussed in this
article.

How can we select, from the sublattices of indexm, those that are square lattices? An
efficient way, which also generalizes to other planar symmetries, is through the observation
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thatZ2 can be seen as a ring of algebraic integers. In this case, we have

Z2 = Z[i] = {m+ ni|m, n ∈ Z} (3)

which are the so-called Gaussian integers [5], the algebraic integers in the quadratic field
Q(i) = {p + qi|p, q ∈ Q} (a field extension of the rationalsQ of degree 2). Sublattices
now correspond to subgroups of finite index, and those invariant under fourfold rotation
(i.e. under multiplication byi) correspond toideals. They are the subgroupsa ⊂ Z[i] with
γ a ⊂ a for all γ ∈ Z[i], for background material on the concepts and results used we refer
the reader to [7, 5, 18].

Consequently, counting all square sublattices ofZ2 of indexm is the same as counting all
ideals of the ringZ[i] of finite indexm, wherem = norm(a) is the (number theoretic) norm
of a (which equals the number of residue classes ofa in Z[i]). As Z[i] is a principal ideal
ring and commutative, each ideal,a, is two-sided and generated by an elementα ∈ Z[i],
i.e.

a = αZ[i] (4)

for someα = k + `i. But then, the norm ofa simply reads

norm(a) = |α|2 = k2+ `2 (5)

which is the area of the fundamental domain of the sublattice defined byα.
The number of these ideals of indexm is our numbera4(m), and it is a multiplicative

function which is a consequence of unique prime factorization (up to units) [5] in the ring
Z[i]. Its generating function (of Dirichlet series type) is the Dedekindζ -function of the
field K = Q(i)

ζK(s) =
∑

a

1

norm(a)s
=
∞∑
m=1

a4(m)

ms
(6)

where the first sum runs over all idealsa 6= {0}. It reads explicitly

ζK(s) =
∞∑
m=1

a4(m)

ms
= 1

1− 2−s
∏

p≡1(4)

1

(1− p−s)2
∏

p≡3(4)

1

1− p−2s

= 1+ 1

2s
+ 1

4s
+ 2

5s
+ 1

8s
+ 1

9s
+ 2

10s
+ 2

13s
+ 1

16s
+ 2

17s

+ 1

18s
+ 2

20s
+ 3

25s
+ 2

26s
+ · · · . (7)

One can easily derive an explicit expression for the coefficients. The result isa4(1) = 1,
a4(2r ) = 1, a4(mn) = a4(m)a4(n) for m, n coprime (multiplicativity ofa4(m)), a4(p

r) =
r + 1 for p ≡ 1(4), and, finally,a4(p

2r ) = 1 anda4(p
2r−1) = 0 for p ≡ 3(4).

A Dirichlet series generating function allows the determination of the asymptotic
behaviour of the coefficients through the residue of theζ -function at its right-most pole
in the complexs-plane (s = 1 in this case). The result is that theaveragevalue of
a4(m) is constant, namelyπ/4. In other words, the number of possibilities to colour the
square lattice with less thanN colours (and with our general restrictions discussed above)
is asymptoticallyπN/4.

3. More generality: other planar cases

Having described the square lattice in detail, we shall now generalize our approach to other
Z-modules of the plane, namely those withn-fold rotational symmetry,n > 2. Though
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many things are similar here, the number theoretic background is a lot more involved, see
[18].

Let us nevertheless consider theZ-span of a regularn-star,

Mn := Z1+ Zξ + · · · + Zξn−1 (8)

whereξ = exp(2π i/n). This is called the standardn-fold symmetric module of the plane
[11]. It is a Z-module of rankφ(n), whereφ denotes Euler’s totient function [5], and
it is discrete (i.e. a lattice) only forn = 3, 4, 6. Note thatM3 = M6, and, in general,
Mn =MN whereN is defined asn resp. 2n for n even resp. odd. So, the moduleMn

hasN -fold rotational symmetry.
The cases withn = 5 andn > 7 correspond to 2D quasicrystals or other non-periodic

Delone sets, where they show up as the so-called limit translation modules [4, 10] of the
discrete structures. Consequently, as discussed in detail in [13, 14], these modules are
universal objects, and the colouring problem has to be solved for them. The results then
apply to each translation class of points of the corresponding Delone set separately.

Now, how does definition (8) help? The first observation is thatMn = Z[ξ ] is the ring
of cyclotomic integers in the cyclotomic fieldQ(ξ) (see [18] for details), and the second
is that the subgroups we need (i.e. those withN -fold symmetry) are againideals of Z[ξ ].
So, it is helpful to know the Dedekindζ -function of Q(ξ) which is the Dirichlet series
generating function of the numbers of ideals of a given index.

In what follows, we will list some examples, including all those related to 2D
quasicrystals found so far. They share another special property with other cases of small
n, namely the uniqueness of the ideal class. This means that, for fixedn, all ideals are
equal up to a similarity transformation, or, in other words, there is only one Bravais-type
of n-fold symmetric modules of the plane [11] of rankφ(n). This is true of precisely 29
planar modules, namely those with

n = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28,

32, 33, 35, 36, 40, 44, 45, 48, 60, 84

(wheren 6≡ 2 mod 4 to avoid double counting), see [18, theorem 11.1].
The necessary material for the actual calculation of theζ -functions can be found in [14,

section III] and will not be repeated here. In what follows, we just summarize the results
for several important 2D lattices and modules.

3.1. The triangular lattice

The triangular lattice (with sixfold symmetry) is a scaled-down version of the root lattice
A2 and coincides with the ring of Eisenstein integers [5]. They are the algebraic integers
in the quadratic fieldK = Q(√−3). The correspondingζ -function reads

ζK(s) =
∞∑
m=1

a6(m)

ms
= 1

1− 3−s
∏

p≡1(3)

1

(1− p−s)2
∏

p≡2(3)

1

1− p−2s

= 1+ 1

3s
+ 1

4s
+ 2

7s
+ 1

9s
+ 1

12s
+ 2

13s
+ 1

16s
+ 2

19s

+ 2

21s
+ 1

25s
+ 1

27s
+ 2

28s
+ · · · . (9)

The explicit expressions for the coefficients area6(1) = 1, a6(3r ) = 1, a6(mn) =
a6(m)a6(n) for m, n coprime,a6(p

r) = r + 1 for p ≡ 1(3), and finally, forp ≡ 2(3),
one hasa6(p

2r ) = 1 anda6(p
2r−1) = 0. The average value ofa6(m) is asymptotically

π/3
√

3.
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3.2. Fivefold symmetry

The fivefold module in the plane,M5, is the ring of algebraic integers in the fieldK = Q(ξ),
with ξ = e2π i/5. Its ζ -function reads

ζK(s) =
∞∑
m=1

a10(m)

ms
= 1

1− 5−s
∏

p≡1(5)

1

(1− p−s)4
∏

p≡−1(5)

1

(1− p−2s)2

∏
p≡±2(5)

1

1− p−4s

= 1+ 1

5s
+ 4

11s
+ 1

16s
+ 1

25s
+ 4

31s
+ 4

41s
+ 4

55s
+ 4

61s

+ 4

71s
+ 1

80s
+ 1

81s
+ 4

101s
+ · · · . (10)

As before, the coefficientsa10(m) can be given explicitly. Due to their multiplicativity, it
is sufficient to knowa10(m) for m a prime power. The result isa10(1) = 1; a10(5r ) = 1;
a10(p

r) = (r + 1)(r + 2)(r + 3)/6 for p ≡ 1(5); a10(p
2r+1) = 0 anda10(p

2r ) = r + 1 for
p ≡ 4(5); finally, a10(p

4r ) = 1 anda10(p
4r−`) = 0 (with ` = 1, 2, 3) for p ≡ ±2(5). The

average value ofa10(m) is asymptotically 4π2 log(τ )/25
√

5' 0.339 837, whereτ denotes
the golden ratio.

3.3. Sevenfold symmetry

Before we complete the examples related to quadratic irrationalities, let us give at least
one example of a more complicated structure, namely that of sevenfold (and hence also
fourteenfold) symmetry. Here,K = Q(e2π i/7), and theζ -function reads:

ζK(s) =
∞∑
m=1

a14(m)

ms
= 1

1− 7−s
∏

p≡1(7)

1

(1− p−s)6
∏

p≡3 or 5(7)

1

1− p−6s

×
∏

p≡2 or 4(7)

1

(1− p−3s)2

∏
p≡6(7)

1

(1− p−2s)3

= 1+ 1

7s
+ 2

8s
+ 6

29s
+ 6

43s
+ 1

49s
+ 2

56s
+ 2

64s
+ 6

71s

+ 6

113s
+ 6

127s
+ 3

169s
+ 6

197s
+ · · · . (11)

Since it is clear how to derive explicit formulae for the coefficients by suitable
manipulations with geometric series, we suppress such details hereafter. Also, the
asymptotic behaviour can be calculated along the lines mentioned above, see [14] for details.

3.4. Eightfold symmetry

Here, we obtain, withK = Q(e2π i/8):

ζK(s) =
∞∑
m=1

a8(m)

ms
= 1

1− 2−s
∏

p≡1(8)

1

(1− p−s)4
∏

p≡−1(8)

1

(1− p−2s)2

∏
p≡±3(8)

1

(1− p−2s)2

= 1+ 1

2s
+ 1

4s
+ 1

8s
+ 2

9s
+ 1

16s
+ 4

17s
+ 2

18s
+ 2

25s

+ 1

32s
+ 4

34s
+ 2

36s
+ 4

41s
+ 2

49s
+ · · · . (12)
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3.5. Twelvefold symmetry

The cyclotomic field is nowK = Q(e2π i/12), and theζ -function reads

ζK(s) =
∞∑
m=1

a12(m)

ms
= 1

1− 4−s
1

1− 9−s
∏

p≡1(12)

1

(1− p−s)4

×
∏

p≡−1(12)

1

(1− p−2s)2

∏
p≡±5(12)

1

(1− p−2s)2

= 1+ 1

4s
+ 1

9s
+ 4

13s
+ 1

16s
+ 2

25s
+ 1

36s
+ 4

37s
+ 2

49s

+ 4

52s
+ 4

61s
+ 1

64s
+ 4

73s
+ 1

81s
+ · · · . (13)

At this point, we close the section on 2D examples. More can be worked out explicitly
with the material of [14, section III] and the general theory as explained in [18, sections 1–4
and 11]. In table 1, the numbersaN(m) up tom = 30 are summarized for variousN .

Table 1. Number of colourings for various planar symmetries.

m a4(m) a6(m) a8(m) a10(m) a12(m) a14(m)

1 1 1 1 1 1 1
2 1 0 1 0 0 0
3 0 1 0 0 0 0
4 1 1 1 0 1 0
5 2 0 0 1 0 0
6 0 0 0 0 0 0
7 0 2 0 0 0 1
8 1 0 1 0 0 2
9 1 1 2 0 1 0

10 2 0 0 0 0 0
11 0 0 0 4 0 0
12 0 1 0 0 0 0
13 2 2 0 0 4 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 1 1 1 1 1 0
17 2 0 4 0 0 0
18 1 0 2 0 0 0
19 0 2 0 0 0 0
20 2 0 0 0 0 0
21 0 2 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 3 1 2 1 2 0
26 2 0 0 0 0 0
27 0 1 0 0 0 0
28 0 2 0 0 0 0
29 2 0 0 0 0 6
30 0 0 0 0 0 0
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4. 3D: The cubic Bravais classes

Let us consider the so-called primitive cubic lattice, represented byZ3. This is also called
P -type for short. It is only one of three possible Bravais classes with cubic symmetryOh,
the other two being the face-centred cubic (fcc orF -type) and the body-centred cubic (bcc
or B-type) ones. This shows one immediate complication: sublattices with cubic symmetry
may be of a different Bravais type! In fact, insideZ3 there is oneF -type sublattice of
index 2 (0F = {(m1, m2, m3)|m1 + m2 + m3 even}) and oneB-type sublattice of index 4
(0B = {(m1, m2, m3)|m1 ≡ m2 ≡ m3(2)}). Consequently, it is natural to attack our problem
in two steps, first focusing on a single Bravais class and later extending to all of them.

Again, the focus is on those cases where one colour occupies a sublattice (compare with
[6] for the more general situation). Let us thus first study sublattices ofP -type, i.e. we ask
for rotationsR, followed by a homothetyα > 0, such that

αRZ3 ⊂ Z3. (14)

Note that we need neither consider reflections, as they can always be written as−R
and inversion is a lattice symmetry, nor negativeα, for the same reason. Also,α = 0
would not give us a 3D lattice. If we now use the standard basise1, e2, e3 and write
Z3 = Ze1⊕Ze2⊕Ze3, we are actually asking for allR ∈ SO(3) andα > 0 such thatαR
has integer entries only.

Now, if αR is integral, so is its transpose, andαR(αR)t = α21I implies α2 ∈ N. On
the other hand, det(αR) = α3 is also an integer. Therefore,α = α3/α2 must be rational.
But, as its square is an integer,α itself must be an integer, and then the rotation matrix,
R, can only have rational entries, i.e.R ∈ SO(3,Q). Then,α must actually be an integer
multiple of the denominator ofR (being the smallest integerm such thatmR is integral),
see [2] for a more detailed discussion.

Let us pause to remark that the same type of argument can be used forZn with arbitrary
n. If n is odd, one finds thatαR maps onto aP -type sublattice if and only ifR ∈ SO(n,Q)
andα is an integer multiple of the denominator ofR. If, however,n is even, we can also
obtain solutions whereα is a quadratic irrationality (and onlyR2 ∈ SO(n,Q)), as happened
above in the case of the square lattice.

Our combinatorial problem in 3D can now be solved if we know the number of
SO(3,Q)-matrices with a given denominator. This number is known from the solution
of a different, but closely related problem, namely that of the coincidence rotations of the
cubic lattice, compare with [3] and references therein. The corresponding Dirichlet series
generating function8cub(s) is repeated in the appendix for convenience.

Let us now derive the generating function for the number of cubic sublattices ofZ3.
There are three different sources for them. First, for eachR ∈ SO(3,Q), we have one
solution of the form0 = den(R)RZ3 (with den(R)3 different colours, namely one for0
and each of its cosets). This same solution is obtained by 24 pairwise differentSO(3,Q)-
matrices, becauseSO(3,Z) (the rotation symmetry group ofZ3) contains 24 elements. The
generating function for these cases is obviously8cub(3s).

Next, for each such0, we also have the sublatticem0 for eachm ∈ N, and none of
those, except0 itself, has been counted yet. Since the number of colours form0 is m3

times as large as that of0, our generating function gets multiplied byζ(3s) to account for
these possibilities. This exhausts theP -type sublattices ofZ3 where

F(s) = ζ(3s)8cub(3s) = 1+ 1

8s
+ 5

27s
+ 1

64s
+ 7

125s
+ 5

216s
+ 9

343s
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+ 1

512s
+ 17

729s
+ 7

1000s
+ 13

1331s
+ · · · (15)

is the proper generating function for them.
Finally, one can also find, as explained earlier, anF -type and aB-type sublattice in

each of theP -type cubic ones, which results in an overall factor 1+ 2−s + 4−s . Altogether
this gives the generating function

Fcub(s) = (1+ 2−s + 4−s)ζ(3s)8cub(3s)

= 1+ 1

2s
+ 1

4s
+ 1

8s
+ 1

16s
+ 5

27s
+ 1

32s
+ 5

54s

+ 1

64s
+ 5

108s
+ 7

125s
+ 1

128s
+ · · · . (16)

The Bravais type can be determined as follows. Ifm is a possible number of colours (i.e.
the denominator of a fraction with non-zero numerator), and ifs is the largest integer such
that 2s |m, then the colouring is based onP -, F - or B-type if s is congruent (mod 3) to 0,
1 or 2, respectively. The answer to the other cubic lattices is the same, with the roles ofP ,
F andB cyclically interchanged.

5. 3D: The icosahedral modules of rank 6

It is well known that there are three different icosahedral modules in three-space, which
can be obtained as projections of the three types of hypercubic lattices in six-space. They
are thus calledB-, P -andF -type for body-centred, primitive and face-centred, respectively.
It is convenient to describe them in an orthogonal basise1, e2, e3 of twofold axes of the
icosahedron. Withαi ∈ Z[τ ], τ = (1+√5)/2 the golden ratio, theB- andF -type modules
then read

MB =
{ 3∑
i=1

αiei

∣∣∣∣τ 2α1+ τα2+ α3 ≡ 0(2)

}
MF = {x ∈MB |α1+ α2+ α3 ≡ 0(2)}.

Clearly,MF is a submodule ofMB of index 4, and both areZ-modules of rank 6, but also
Z[τ ]-modules of rank 3. In particular, they are both invariant under multiplication byτ .

In between these two modules, there is also aP -type module, or in fact there are three
different ones of this type (all three on different scales), namely

M(1)
P = {x ∈MB |α1+ α2+ α3 ≡ 0 or 1(2)}

M(2)
P = {x ∈MB |α1+ α2+ α3 ≡ 0 or τ(2)}

M(3)
P = {x ∈MB |α1+ α2+ α3 ≡ 0 or τ 2(2)}.

(17)

They are againZ-modules of rank 6, but notZ[τ ]-modules because they are not invariant
under multiplication byτ . In fact, asτM(1)

P = M(2)
P etc, they form a three-cycle under

multiplication by τ . Nevertheless, together withZ[τ ]3 = Z[τ ]e1 + Z[τ ]e2 + Z[τ ]e3, we
have the inclusion

2Z[τ ]3 4⊂MF

2⊂M(i)
P

2⊂MB

4⊂ Z[τ ]3 (18)

for i = 1, 2, 3, where the integer on top of the inclusion symbol denotes the corresponding
index, for exampleMB is a submodule ofZ[τ ]3 of index 4 which means thatZ[τ ]3 is a
disjoint union ofMB and three cosets of it.
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Let us now consider the colouring problem for the moduleMB and let us assume that
we know all submodules3 of the same Bravais type which are maximal in the sense that
α3 ⊂MB impliesα ∈ Z[τ ]. But then, as3 itself must be aZ[τ ]-module, eachα ∈ Z[τ ]
is possible, and the corresponding group–subgroup index is

[3 : α3] = |N(α)3| (19)

whereN(γ ) denotes the (number theoretic) norm in the quadratic fieldQ(τ ). Forγ = p+qτ
it reads

N(γ ) := γ γ ′ = p2+ pq − q2 (20)

whereγ ′ = p + qτ ′ is the algebraic conjugate ofγ defined throughτ ′ = −1/τ = 1− τ .
In particular, equation (19) infers thatα3 requires|N(α)3| times as many colours as3.

The number ofdifferent solutions obtained this way is in one-to-one correspondence with
the ideals ofZ[τ ], which are counted by theζ -function ζQ(τ )(s), see the appendix. So, this
contributes a factor ofζQ(τ )(3s) to the generating function of the colouring problem.

Now, we have to determine the maximal submodules3 of B-type. Before we do
that, let us briefly look at the related colouring problem for the (modulated cubic) module
Z[τ ]3 = Z3⊕ τZ3. Consider a rotation,R, and a stretching factor,α, such that

αRZ[τ ]3 ⊂ Z[τ ]3. (21)

Then, by an analogous argument to that of the cubic case, we may conclude that bothα2 and
α3 are inZ[τ ], and henceα ∈ Q(τ ). But, from (20),N(α) ∈ Q andN(α2) = N(α)2 ∈ Z,
henceN(α) ∈ Z which impliesα ∈ Z[τ ]. Consequently,R ∈ SO(3,Q(τ )), and we then
conclude, very much as in the case of the cubic latticeZ3, that the only (linear) similarity
transformations that mapZ[τ ]3 into itself areZ[τ ]-multiples of den(R)R, where den(R) is
the greatest common divisor of allβ ∈ Z[τ ] with βR integral. Note thatSO(3,Q(τ )) is
the group of coincidence rotations ofZ[τ ]3 (and simultaneously of the icosahedral module
MB), see [3, 1] for details. From here, one can calculate the generating function of the
different colourings [2], using explicit results from [1].

Instead of going into details there, let us now consider the icosahedral moduleMB , and
a similarity transformationαR such that

αRMB ⊂MB. (22)

From (18) it follows that alsoαRMB ⊂ Z[τ ]3 and henceαR(2Z[τ ]3) ⊂ Z[τ ]3, which
means that 2αR must haveZ[τ ] entries only. This is a necessary (but not sufficient)
condition, whileαR integral is certainly sufficient, but not necessary. In any case, we can
conclude that 2α ∈ Z[τ ] andR ∈ SO(3,Q(τ )) is a rational matrix.

For eachR ∈ SO(3,Q(τ )) we thus obtain one maximalMB-submodule3, and
precisely 60 differentR’s will result in the same3 as there are 60 rotation symmetries
of the icosahedron that map3 onto itself. To obtain3, we have to multiplyR by a suitable
number, and, in contrast to the cubic case above, this number is not always the denominator
of R, but sometimes a divisor of it (then coinciding with den(R)/2 up to units inZ[τ ]). In
any case, it can be chosen as a totally positive number inZ[τ ] whose norm is the so-called
coincidence index6(R), defined through [3, 1]

6(R) := [MB : (MB ∩ RMB)]. (23)

The corresponding similarity transformation mapsMB to a maximal submodule3 which
then requires6(R)3 different colours. So, with8ico(s) being the generating function for
the icosahedral coincidence problem, see [3, 1] and the appendix, the contribution to the
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colouring problem is given by the factor of8ico(3s), in complete analogy with the cubic
case.

The same kind of reasoning also applies to the moduleMF . Therefore,

F(s) = ζQ(τ )(3s)8ico(3s) = 1+ 6

64s
+ 7

125s
+ 11

729s
+ 26

1331s
+ 26

4096s

+ 42

6859s
+ 42

8000s
+ 37

15 625s
+ 62

24 389s
+ · · · (24)

is, at the same time, the generating function for theB-type submodules ofMB and for
the F -type submodules ofMF . In order to include theP -type modules in a natural
way, we observe that the triple(M(1)

P ,M
(2)
P ,M

(3)
P ) considered as a set is mapped onto

itself under multiplication withany Z[τ ]-number, while each member of the set has its
own coincidence site submodules (with the same index formula as for theB- andF -type
modules). Furthermore, two such triples (which are three-cycles under multiplication by
τ ) are either equal or disjoint. So, it is easier to count triples rather than single modules
becauseF(s) is then also the generating function for this case, and a separate counting just
requires multiplication of the corresponding numerator by 3.

If we want to know the number of icosahedral submodules of either type, we obtain
three different solutions, depending on the module we start from:

F
(B)

ico (s) = (1+ 2−s + 4−s)ζQ(τ )(3s)8ico(3s)

F
(P )

ico (s) = (1+ 2−s + 32−s)ζQ(τ )(3s)8ico(3s)

F
(F)

ico (s) = (1+ 16−s + 32−s)ζQ(τ )(3s)8ico(3s).

(25)

This is slightly more complicated than the cubic case as a consequence of equation (18).
In particular, bothB- and P -type allow a two-colouring (then being ofP - and F -type,
respectively) while 16 is the smallest number of colours for theF -type module.

6. Concluding remarks

In this article, a subclass of the colouring problem of lattices and modules with irreducible
symmetries was considered. The combinatorial part was explicitly solved by means of
Dirichlet series generating functions for various planar modules withn-fold symmetry as
well as for cubic lattices and icosahedral modules in three-space. A similar analysis is
possible in four dimensions (4D), as well as for certain series of lattices in higher dimension.

Clearly, one is not only interested in the number of colouring possibilities but in the
actual colour symmetry groups. In the planar case, a more complete answer is possible
through the unique factorization property in rings of cyclotomic integers, which will be
reported separately. In three-space, due to non-commutativity of the ring of integer
quaternions resp. the ring of icosian numbers, things are more complicated and might
require a more detailed analysis.

As to the generality of our findings, it is clear that there are relevant cases of colourings
already with fourfold symmetry that donot belong to the restricted class investigated here,
compare with [17]. They can be found systematically by the method of [8] which also
allows for an algorithmic version that can be used on a computer. Whether the generating
function approach allows a generalization to cover this, e.g. along the lines of [6, 17, 15], is
presently under investigation.
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Appendix

It is the purpose of this appendix to provide some details on the generating functions and
the ζ -functions used above. The simplest case is Riemann’sζ -function itself,

ζ(s) =
∞∑
m=1

1

ms
=
∏
p

1

1− p−s (26)

which allows a representation as an Euler product because all numerators of the sum are 1
and thus define a multiplicative function.

Similarly, theζ -function ofQ(τ ) (which counts the ideals inZ[τ ]) is the Dirichlet series
of a multiplicative function and reads

ζQ(τ )(s) = 1

1− 5−s
∏

p≡±1(5)

1

(1− p−s)2
∏

p≡±2(5)

1

1− p−2s

= 1+ 1

4s
+ 1

5s
+ 1

9s
+ 2

11s
+ 1

16s
+ 2

19s
+ 1

20s
+ 1

25s
+ 2

29s

+ 2

31s
+ 1

36s
+ 2

41s
+ 2

44s
+ · · · . (27)

The various otherζ -functions that appear in the text are described in detail in [14] and
need not be repeated here.

Finally, let us give the generating functions of the coincidence problem, for details on
how to calculate them we refer the reader to [1].

8cub(s) =
∏
p 6=2

1+ p−s
1− p1−s =

1− 21−s

1+ 2−s
ζ(s)ζ(s − 1)

ζ(2s)

= 1+ 4

3s
+ 6

5s
+ 8

7s
+ 12

9s
+ 12

11s
+ 14

13s
+ 24

15s
+ 18

17s
+ 20

19s

+ 32

21s
+ 24

23s
+ 30

25s
+ 36

27s
+ · · · (28)

8ico(s) = 1+ 5−s

1− 51−s
∏

p≡±2(5)

1+ p−2s

1− p2(1−s)
∏

p≡±1(5)

(
1+ p−s
1− p1−s

)2

= 1+ 5

4s
+ 6

5s
+ 10

9s
+ 24

11s
+ 20

16s
+ 40

19s
+ 30

20s
+ 30

25s
+ 60

29s

+ 64

31s
+ 50

36s
+ 84

41s
+ 120

44s
+ · · · . (29)

The latter function can be expressed in terms of theζ -function of equation (27)

8ico(s) = ζQ(τ )(s)ζQ(τ )(s − 1)

ζQ(τ )(2s)
(30)

which shows again the close analogy between the cubic and the icosahedral case.
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